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ABSTRACT

A numerical approach is presented for design sensitivity analysis.
The approach is based on perturbing the design variables and then using
iterative schemes to obtain the response of the perturbed structure. A
forward difference formula then yields the approximate sensitivity.
Algorithms for displacement and stress sensitivity as well for eigenvalue
and eigenvector sensitivity are developed. Results for the stress
sensitivity problem are compared with the semi-analytical method. Examples
are considered in structures and fluids.

INTRODUCTION

Iterative methods are presented for obtaining design sensitivity
coefficients (or derivatives) of implicit functions. Design derivatives
are important not only in gradient-based optimization codes, but also for
examining trade-off's, system identification, and probabilistic design.
Iterative methods are presented for both the algebraic and eigenvalue
problems; stress, eigenvalue and eigenvector derivatives are considered.
The iterative approaches provide approximate derivatives. They are very
simple to implement in a program, especially for calculation of eigenvector
derivatives. The idea of using iterative methods for a class of problems
was suggested for one dimensional problems in (ref. 1). Here, this idea is
developed to handle the matrix algebraic as well as the generalized
eigenvalue problems.

The basic idea behind the approach is as follows. Let

g = g(b,y) (1)

be a continuously differentiable function of a design variable vector b of
dimension (kx1), and a state variable vector y of dimension (nx1). The
state variables are implicitly dependent on design through the n state
equations of the form

9(b,y) =0 (2)

Let bO be the current design and y© be the associated state variable
vector. The problem of concern is to ¥1nd the sensitivity, dg/db, at the
current design. The iterative method is based on perturbing each design
variable, in turn, as

b‘?:b?m (3)

Equation (2) now becomes

8(b%,y%) = 0 (4)
Now, a modified residual-correction or Newton-Raphson technique is

applied to solve Eq. (4), treating xe as the vector of unknowns.
Then, the sensitivity vector is given approximately by

€ € 0 0
dg/dbi = [g(b , y )-g(b ,y )1/e (5)



For the eigenvalue problem, as discussed later, the system in Eq. (4)
is augmented by a certain orthogonality relation. Note that certain
coefficient matrices involving stiffness, mass, etc. have been decomposed
at the current design while solving for yO. The iterative approach
presented here can be viewed as re-analysis schemes used to solve Eq. (4),
which uses the already decomposed matrices. Since the perturbation e is
very small, the iterative schemes converge very rapidly.

DISPLACEMENT AND STRESS SENSITIVITY

A finite element model of the structure is assumed. The problem of
obtaining design derivatives of displacements and stresses {is now
considered. Consider a function

g = g(b,z) (6)

which represents a stress constraint, with b = (kx1) design vector and z =
(nx1) displacement vector which is obtained “from the finite element
equations

K(b) z = F(b) (7)

where K is an (nxn) structural stiffness matrix, and F is an (nxl) nodal
load vector. Let bO be the current design. At this Stage, the analysis
has been completed. Thus, the decomposed K(b)?® and z© are known.

The derivative of the function g with respect to the ith design
variable is given by

dg/dbj = dg/abj + dg/dz -+ dz/dbj (8)

The partial derivatives dg/db and dg/dz are readily available using the
finite element relations. The problem, therefore, is to compute the
displacement sensitivity, dz/db. An iterative approach for computing this
is now given. -

Corresponding to the ith design variable, let the perturbed design

vector, b®, be defined as

9 (9)

The perturbation € is relatively small, and a value of 1% of bj has found
to work well in practice. The choice of ¢ is based on balancing the

0 0,7

€
Q =(b b 9 ceey b_i+€, cs ey bk)

truncation and cancellation errors. The problem is to find 58, the
solution of

K(b®) z& = F(b®) (10)

using the decomposed K(b°) and z©. A modified version of the
residual-correction scheme given in (ref. 2) is given below.
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Algorithm 1 (Displacement and Stress Sensitivity)

Step (0). Zet j=0. Choose the perturbation € and the error tolerance
Define Qe as in Eq. (9).
Step (). Calculate the residual rJ from
rd - k%) 2 - FY) (11)
Step (ii). Solve for the correction el from
K(b0) el = -r] (12)
Step (iii). Update
zJtl = 2 + el (13)
Step (iv). Check the convergence criterion
|1 z3* - 23} s (14)

If (14) is satisfied, then set z° = zJ*! and compute the
displacement sensitivity as

dz / dbj ~ (25 -2°) / ¢ (15)

The stress sensitivity can be recovered from Eq. (8). If Eq.
(14) is not satisfied, set j = j+1 and re-execute steps
(i)-(iv) above.

Numerical results and comparison with the exact and semi-analytical
methods discussed in the literature are presented subsequently.
Theoretically, it can be shown that the above scheme will converge provided

[2]:

ro [ - K00k (05)] < 1 (16)

where rg(A) = spectral radius of the matrix A, which is the maximum size

of the eigenvalues of A. In the problem considered here, K(b®) and 5(26)
are roughly equal owing to € being small, and (16) can generally be
expected to hold.

EIGENVALUE AND EIGENVECTOR SENSITIVITY

Eigenvalue sensitivity is useful when resonant frequencies or critical
buckling loads need to be restricted. Exact analytical expressions for
eigenvalue sensitivity can be readily derived for the case of non-repeated
roots [3]. The problem of obtaining eigenvector sensitivity, on the other
hand, is more complicated and is an area of current interest [4-7].
Eigenvector sensitivity is useful in obtaining the design derivatives of



forced dynamic response. Here, an iterative approach is presented for
approximate derivatives of eigenvalues and eigenvectors. The approach is
particularly easy to implement in a program and provides both eigenvalue
and eigenvector derivatives simultaneously. Further, the derivative of a
particular eigenvector does not require knowledge of all eigenvectors of
the problem, as with certain analytical methods.

Consider the generalized eigenvalue problem

K(b)y = 2 M(b)y (17)

where A is a particular non-repeated eigenvalue and y is the associated
eigenvector. For the frequency problem, K and M represent the structural
stiffness and mass matrices, respectively. For the buckling problem, K and
M represent the structural stiffness and geometric stiffness matrices,
respectively. It is desired to find the sensitivities dA/db and dy/db.

Let bO be the current design vector and (1Ag, y®) be a g1ven

e1genva1ue-e1genvector pa1r at the current design. Let b be a perturbed
design vector as given in Eq. (9). The residual is given by

R = K(2%)y® -3 M(B®)y" (18)
The object is to solve the nonlinear equations R = 0 for the unknowns Aeand

ye; the Newton-Raphson technique is used for this purpose. The Jacobian J

of the system in Eq. (18) is [aRloye, dR/dA ] The Newton-Raphson equations
are consequently:

[K(b5)-) M%) MBSy ] (:f) - R (19)

Note, however, that Eq. (19) represents a system with n equations and (n+l)
unknowns; an additional equation is needed. This additional equation is
obtained by introducing the normalization condition

-y Moy =0 (20)

which states that the change in the eigenvector is orthogonal to the
original eigenvector with respect to the mass matrix., In fact, the above
scheme has been used as a re-analysis approach in (ref. 8). Here, an
additional modification is made: the Jacobian matrix in Eq. (19) is

modified by replacing K(b%) by K(b), y® by yO and A_ by Ag. The

motivation for this, as in the previous section, is tc preserve a constant
coefficient matrix in the iterative scheme. The resulting efficiency has
not been found to affect the convergence of the procedure owing to the
relatively small size of €. The above modifications lead to an iterative
scheme based on solving the system.

6 -R
o (1) - [
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where
K(b9)-AoM(bO) ~M(b9)y©

c- T (22)
-y© M(b0) 0
The coefficient matrix is symmetric and nonsingular for the case of
non-repeated roots [8]. Gaussian elimination can be used to solve Eg. (21).
The algorithm for eigenvalue-eigenvector sensitivity is now given.
Algorithm 2 (Eigenvalue-Eigenvector Sensitivity)

Step (0). Set j=0. Choose the perturbation € and the error tolerances
A; and Ao,

Define QE as in Eq. (9). Decompose the matrix C given in Eq.
(22).

Step (i). Define the residual
RI = k(b%)yd - aM(bF)yd (23)

Step (ii). Solve the algebraic equations

Sy -RJ
[c] = (24)
6A 0

for 8y and 6A.
Step (iii). Update
.y_.]'+1 = lj + 6y
Aj+1 = 2j + GA (25)
Step (iv). Check the convergence criterion

[| o6y || 41,6 <4 (26)
If (26) is satisfied, then set y* =yJ*1, A_ = ajs1 and
compute the sensitivity as
dy/db; = (y& -y0)/e
dr/dby = (M, -ho)/e



If (26) is not satisfied, set j = j+l and re-execute steps
(i)-(iv) above.

Numerical results are presented in the following section.

NUMERICAL RESULTS

Thin plate problem

Consider the plane stress problem in Fig. 1, where inverse thicknesses
are the design variables. That is, the reciprocal of the plate thickness
is chosen as a design variable. Inverse design variables are used in
optimal design literature because they linearize the stress function and
lead to improved convergence. The stress constraint function is the
von Mises failure criterion in element j, given by

gj = oym/0a-1 (28)

where oymyZ=0x2 + o6y2 = oyoy + 37,2 and oy = constant allowable stress
Timit. Constant s%ra1n tr1angu1ar elements are used. For brevity, only
the design sensitivity coefficients, dgjg9/dbjg and dgp4/dbog, are presented
in Table 1. The sensitivity vectors have been obtained using Algorithm 1
discussed earlier. In Table 1, the results obtained by the iterative
method are compared with the semi-analytical method used widely in the
Titerature, based on the formula in Eq. (8) with dz/db; obtained from

K(b®)-K(b®) o  [F(b®)-F(b%)]

K d_Z_/db_i =" z + € (29)

The results are also compared with the exact sensitivity obtained using
analytical derivatives. It is interesting to note that the semi-analytical
method yields the same result as the first iteration of the iterative
method. However, the iterative method further improves upon this and
approaches the exact sensitivity (Table 1). While all methods yield values
of acceptable accuracy, the comparison serves to illustrate the nature of
the iterative process. This aspect is shown graphically in Fig. 2. It is
noted that when us1ng direct variables (as opposed to reciprocal
variables), the semi-analytical method yields essentially exact sensitivity
owing to the fact that stiffness is a linear function of design variables.
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Table 1.
Method dgjg/dbig dgp4/dbog
8.7098 5.6437
Iterative 2 8.7949 5.6980
8.7957 5.6986
Semi-analytical 8.7098 5.6437
Exact 8.7969 5.7002

Plane Frame Problem

Consider the frame structure in Fig. 3. The design variables
associated with the I-section are b = (h, w, ty, tf) as shown in Fig. 3.
The current design is b = (3.0, 3.0, 0.3, 0.5) for each element. The
sensitivity of the Towest eigenvalues and corresponding eigenvector
obtained using Algorithm 2 given earlier is presented in Tables 2 and 3,
respectively. For the eigenvector, only selected sensitivity coefficients
are presented for brevity. The maximum number of ijterations required for
an error tolerance of 1077 is five. Thus, we see that convergence of the
algorithm is very rapid and simple to implement. Also, the algorithm does
not require computation of all eigenvectors to find the sensitivity of a
few specific eigenvectors. However, if the sensitivity of all eigenvectors
is required, then alternative approaches may be preferable.
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Table 2.
No. of design variable Eigenvalue sensitivity
1 4359.6
2 1746.9
3 1418.1
4 10481.0
5 807.7
6 -1077.6
7 -4369.5
8 -6465.5
9 503.2
10 -2058.8
11 ~7315.0
12 -12353.0
13 807.7
14 -1077.6
15 -4369.5
16 -6465.5
17 5957.6
18 1964.0
19 540.4
20 11784.0
21 4359.6
22 1746.9
23 1418.1
24 10481.0
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Table 3.

No. of degree of freedom dy/dbsg dy/db17
4 0.036758 0.021438
5 0.000370 0.002413
6 -0.000868 0.003890
7 -0.028564 -0.007628
8 0.000378 0.002547
9 -0.002667 -0.000389

10 -0.028327 -0.007628
11 -0.000653 -0.002547
12 0.001614 -0.000389
13 0.036339 0.021438
14 -0.000407 -0.002413
15 0.000147 0.003890

Fluid Mechanics Problem

The objective of this problem in Fig. 4 is to obtain the sensitivities
of the maximum absolute eigenvalue and eigenvector of the amplification
matrix G of the incompressible Euler equations in fluid mechanics (ref. 9).
This problem is motivated from a study of the stability of the
computational algorithm. The Euler equations are

At

€.
[1- At D+ —p (l-cos8,) Isi &5 A sing,] (I - At D)7

W1 - At D+ - (1-cos8 ) I+i At g sing.] (I - at D)7t
= = 4 y' = by = y* o= -
VI - At D+ (1-cos6.) I+i At ¢ sine ] (6 - 1)
= =g z/ =7 Az = zd 27 =
€
- Bt D ~£ [(1 - cosB )% (1 - cost, )2+ (1 - cos8 )] I

_1[rAs1ne -A—Bsme rCs1n6]

where, I is a (4x4) identity matrix.
The source Jacobian Matrix is
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(o 0 0
1/r 0 2ut2uy/r
(0] = {
0 -2u-uy/r ~uyx/r
9 0 0 0
and the flux Jacobian matrices are
o B 0 0
< 1 2uy 0 0
[A] = 0 Uy Uy 0
\ 0 Uz 0 ux)
'\
(’0 0 8 0
< 0 uy Uy 0 >
[B] = 1 0 2uy 0
0 0 Uz u
\ y
e ™
0 0 0 B
< 0 Uz 0 Uy
[C] = 0 0 uz uy
1 0 0 2ug
\. /
The time step is
At = CFL

1

AX-H[UX+ ux+8]
1 2

AYSH[ uy+ Uy+8]
1 2

\, =% [ u, |+ u,” + 8]
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Data

Grid sizes in x, y and z directions are Ax = 1/16, Ay = /32, Az = 1/32.
Parameter of time-derivative term is 8 = 1.

Radius is r=2, angular velocity of propeller is w=2.

Parameter CFL (Courant-Friedrichs-Lewy Number) is = 5,

Fluid velocities in x, y, z directions are uy = 0.5, uy =1, u; = 1.

The implicit second-order artificial viscosity is i =" 0.

The explicit fourth-order artificial viscosity is €q = 0.

The lower boundaries of wavenumbers 6y, 6y, 6z are = 0, and the upper
boundaries are = m,

Results

The optimum values of wavenumbers Oy, 6y, 8; at which the absolute
value of maximum eigenvalue are maximum, are obtained by using the
f optimization program LINRM [10]. The results are 8y = =0, = n/2. Al
| sensitivity calculations are now done at these values ofyex, By and 6.
The sensitivity of the maximum eigenvalue, absolute maximum eigenvalue and
corresponding eigenvector are shown in Tables 4 and 5.

Rotational
y inflow
profile

Figure 4.
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Table 4. Eigenvalue Sensitivity for Fluid Mechanics

Problem

A=1x 108, ¢ =0.01

Eigenvalue Sensitivity
Design Variable

di/db dir| /d
Uy -0.03928 -0.11272 i -0.08543
uy 0.25361 -0.02037 i 0.21790
uy -0.23827 -0.36236 i -0.37489
CFL 0.13254 +0,06004 i 0.14541
€5 ~-0.12951 -0.29317 i -0.24668
€e -0.84451 -0.46701 i -0.54753
W -0.01807 +0.02823 i -0.00358
O -0.00138 -0.00002 i -0.00125
By -0.00182 -0.00010 1 -0.00167
05 -0.00204 -0.00189 1 -0.00267

bO = (0.5, 1, 1,

A0 = 0,94882 + 0.

| A9| = 1.0601

5, 0, 0, 2, n/2, n/2,
47287 i

n/2)

Table 5. Eigenvector Sensitivity for Fluid Mechanics Problem

A=1x10"8 ¢=0.01

Degree of Freedom

dy/d CFL

dy/dw

s~ D=

-0.22740 -0.27610 i
-0.34796 -0.03808 i
-0.20260 -0.10825 i
-0.19075 -0.10196 i

0.03483 +0.01911 i
0.00969 -0.00969 i
0.07636 +0.00170 i
0.03520 -0.01693 i
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SUMMARY AND CONCLUSIONS

A numerical method has been presented for design sensitivity analysis.
The idea is based on using iterative methods for re-analysis of the
structure due to a small perturbation in the design variable. A forward
difference scheme then yields the approximate sensitivity. Algorithms for
displacement and stress sensitivity as well as for eigenvalues and
eigenvector sensitivity are developed. The iterative schemes have been
modified so that the coefficient matrices are constant and hence decomposed
only once. The convergence is found to be very rapid. Further,
implementation of the algorithms is simple.
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